
40 The Delphi Magazine Issue 46

Under Construction:
Nested Tables
by Bob Swart

Like any piece of technology
related to tables in Delphi, the

title of this month’s column could
also be Nested DataSets: it’s actu-
ally more accurate, as we’ll see
later, though the relevant VCL
component is called TNestedTable.

TNestedTable
The TNestedTable component is
one on the Data Access tab of the
Delphi 4 Client/Server component
palette (it’s not on the Delphi 4 Pro-
fessional palette, although some
claim they can create it dynami-
cally if the DBTables unit is included
in the uses clause).

According to the official defini-
tion (from the help), ‘a nested table
is a dataset component that encap-
sulates a database table that is
nested as a field within another
table’. After reading this definition
several times we’re left with a ques-
tion: how do we make a nested
table? Or, how does one get a data-
base table that is nested as a field
within another table?

The help adds the following.
First: ‘Use TNestedTable to access
data contained in a nested dataset.’
(that’s helpful... Not). Second: ‘A
nested table inherits BDE functional-
ity from TBDEDataSet and so uses the
Borland Database Engine (BDE) to
access the nested table data.’ This is
not even correct, as it turns out we
only need the BDE when working
with the TNestedTable component,
not when working with a ‘nested
table’ itself, something which will
become clear in a moment. And
finally: ‘A nested table provides
much of the functionality of a table
component, except that the data it
accesses is stored in a nested table.’
Now why do I suddenly feel locked
into a moebius ring?

Nested Tables
So, before we can use a
TNestedTable component, it

appears we must first fabricate a
‘nested table’ itself. This should
then be connected to the
DataSetField property of the
TNestedTable component. In fact,
the TNestedTable component
shows all available DataSet fields
and Reference fields in a drop-down
combobox for this DataSetField
property. Of course, if we just drop
a TNestedTableon an empty form or
data module, we won’t see any-
thing in this list. How to get items
(DataSetFields, or nested
DataSets) inside this list, that’s
what we’re looking for now.

Oracle 8
Well, don’t look too long, as it
appears that nested tables are a
specific feature of Oracle 8. Nested
datasets represent the records of
an Oracle 8 nested detail set.

Unfortunately, Delphi 4 doesn’t
offer us the ability to actually
create Oracle 8 tables with these
nested dataset fields, although we
can display and modify data from
existing Oracle 8 dataset fields
using nested datasets. In other
words: as far as I can see now, the
TNestedTable component can only
be used for Oracle 8 tables that
contain a nested detail set, and for
nothing else (if someone else
knows a way to use the
TNestedTable component without
Oracle 8, let me know!).

Master-Detail
The conclusion we arrived at
above could mean the end of this
month’s column. Fortunately, it
only means the end for the
TNestedTable component for this
month, and certainly not the end of
the concept of nested tables itself.
Apart from Oracle 8 nested detail
sets, the idea of nested tables is
also used by the developers at
Inprise to offer a more powerful
way of dealing with master-detail

relationships in a multi-tier distrib-
uted application.

The traditional (standalone and
client/server) way of defining
master-detail relationships is
based on the detail table connect-
ing to a datasource (pointed to the
master table), defining a relation
between one or more fields from
the detail table and the master
table. For example, drop two
tables on a form, set the
DatabaseName to DBDEMOS, and the
TableName properties to customer.
db and orders.db respectively.
Now, drop a DataSource on the
form, set its DataSet property to
the customer.db table component,
and set the MasterSource property
of the orders.db table component
to this DataSource (so customer.db
is the ‘master’ of the orders.db
table). Now, click on the ellipsis
next to the MasterFields property
of the orders.db table. We’ll get the
Field Link Designer dialog, in
which we can specify the index (for
the orders.db table) to use, and
the fields to connect the orders.db
detail table to the customer.db
master table. In our case, we must
use the CustNo index, to link the
CustNo fields from both tables to
each other.

For a standalone or client/server
application, this works fine. How-
ever, for a multi-tier application
(or more general, in an N-Tier envi-
ronment where N is bigger than 2),
where the data for the tables is
provided by a database server,
this scenario has at least two seri-
ous drawbacks.

First of all, the detail table must
fetch and store all its records from
the database server, even if only a
few of the detail records are actu-
ally needed at the client side (after
the master-detail relationship has
been established). So, a poten-
tially large number of records are
sent over for nothing. Whilst in the
current era of computing CPU
cycles may no longer count, band-
width cycles are more important
than ever. Wasting bandwidth by
sending over the entire detail table
before determining the detail
records we actually need is a seri-
ous crime in this internet age
(believe me, it will take at least

42 The Delphi Magazine Issue 46

another decade before bandwidth
is as free as CPU speed and
memory are now). Of course, this
problem can be overcome by using
parameters, sent from the client to
the server, but this involves more
work and can introduce bugs that
are hard to trace.

The second drawback of the
traditional method of defining
master-detail relationships has to
do with the fact that it’s more diffi-
cult to apply updates using client
datasets. This is caused by the fact
that the ClientData component
doesn’t apply updates for multiple
tables in a single transaction, but
on a dataset by dataset level (ie we
must make a separate call to
ApplyUpdates for the master and
detail tables, in which the order
may be important).

In N-tier applications (where N is
bigger than 2), we can now avoid
these problems by using nested
tables to represent the master-
detail relationship. All we need to
do is to define a master-detail rela-
tionship between the tables on the
remote data server (not on the
client), drop a Provider component
and export the master table only
(not the detail table). The trick is
that the master table will automati-
cally include a DataSetField for the
Detail records. And indeed only
for those detail records that are
relevant for the current master
record.

When clients call the GetRecords
method of the provider, it automat-
ically includes the detail datasets
as a DataSet field in the records of
the data packet. When clients call
the ApplyUpdates method of the
provider, it automatically handles
applying updates in the proper
order.

Remote Master-Detail
So, we just need to repeat what we
did for the client side a moment
ago, but this time on a
RemoteDataModule. Drop two tables,
a datasource and a provider com-
ponent, create the master-detail
relationship (for the customer.db
and orders.db tables), connect the
provider component to the cus-
tomer.db table, and export it from
the remote data module.

Note that full source code is on
the disk, as usual, but the impor-
tant unit for the Remote Data
Module should contain the decla-
rations and code shown in Listing 1
when you’re finished.

TClientDataSet
Now that we’ve finished the server
side, let’s focus on the client side,
where we use a TClientDataSet to
connect to our CustomerOrders
data. Start a new application, drop
a DCOMConnection component, and
set the ServerName to the name of
the remote master-detail app (note
that we could also have created a
CORBA Data Module in combina-
tion with a CorbaConnection compo-
nent, but it’s just a bit easier to
show the DCOM example). Next,
drop one ClientDataSet compo-
nent, connect it to the DCOM
Connection component (using its
RemoteServer property), and select
the (only) provider for the nested
CustomerOrders table.

We now have a thin client (ie it
doesn’t need the BDE), with a
ClientDataSet component that
contains a (remote) nested table.
In order to be able to actually use
the nested dataset (ie the detail
records), we must create a persis-
tent DataSet field for the nested
data. This sounds more difficult
than it is: just double click on the
ClientDataSet to start the Fields

Editor (at design-time), right click
in the Fields Editor and select Add
All Fields. This will create persis-
tent fields for every field, including
a DataSetField for the nested detail
table.

We still cannot use this
DataSetField right away, however.
There are a number of ways to
‘drill-down’ into the nested table.
One way, often demonstrated at
seminars by people like Charlie
Calvert, is to use a DBGrid control
connected by a DataSource to the
ClientDataSet. The DBGrid compo-
nent has the ability to recognise a
DataSetField and displays it in a
special way including an ellipsis
(...) when we select that particular
cell of the DBGrid at runtime. If we
click on the ellipsis, a pop-up
window appears that holds
another DBGrid control with the
detail records (ie the entire con-
tents of the nested dataset we just
selected).

Note that we can also do this
programmatically by calling the
DBGrid.ShowPopupEditor method,
with as argument the DataSetField
that we want to show in the pop-up
Window: see Figure 1.

I must admit, this is a spectacu-
lar effect when you see it for the
first time. Maybe it’s fun the
second time as well, but it gets
boring the third time. And let’s be
honest: would you want to tell
your client that he has to click on
the ellipsis to get the detail data?
Just because it’s so much easier
for you to perform updates (we
only need to call ApplyUpdates on
the master ClientDataSet!). We
want to offer our client a solution
where both the master and detail
can be viewed at the same time.
Charlie’s workaround is to put a
panel on the lower half of the form
which holds the master DBGrid,

unit ServerU;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, ComServ, ComObj, VCLCom, StdVcl, BdeProv,
DataBkr, DBClient, NestedSrv_TLB, Provider, Db, DBTables;

type
TNestedDataModule =
class(TRemoteDataModule, INestedDataModule)
Customer: TTable;
Orders: TTable;
dsCustomer: TDataSource;
CustomerOrders: TProvider;

private
public
protected

function Get_CustomerOrders: IProvider; safecall;
end;

var
NestedDataModule: TNestedDataModule;

implementation
{$R *.DFM}
function TNestedDataModule.Get_CustomerOrders: IProvider;
begin
Result := CustomerOrders.Provider;

end;
initialization
TComponentFactory.Create(ComServer, TNestedDataModule,
Class_NestedDataModule, ciSingleInstance, tmApartment);

end.

➤ Listing 1

June 1999 The Delphi Magazine 43

making sure the panel can accept a
dockable control (like the detail
DBGrid). This is also cheating a bit
and I still wouldn’t want to tell my
client to click on the ellipsis first,
then drag the pop-up window to
the empty panel under the first
DBGrid, and so on.

No, there has to be a simpler
way. And as usual with Delphi,
there is. For that, we need to drop
yet another ClientDataSet on the
form, and this time connect the
DataSetFieldproperty to the (only)
persistent Orders DataSetField
which is called NestedClient
DatasetOrders in my example.

Note that this ClientDataSet is
not directly connected to a remote
server, but indirectly, since it gets
its data from the nested dataset
that the first ClientDataSet
received from the remote data
server. Both ClientDataSet compo-
nents should now be connected to
a DataSource and a DBGrid to show
the master and detail in a single
thin client form: see Figure 2.

I think this is a good solution for
displaying and updating master-
detail relationships. Sometimes
displaying the detail in a pop-up
window may be what you need,
sometimes my solution with a
secondary ClientDataSet is better.

The problem with updating the
master-detail relationship is
solved by the fact that we now
have only one call to ApplyUpdates
to make (from the ClientDataSet
that is directly connected to the
remote server), which automati-
cally updates the entire nested
table.

Error Handling
As a final topic this month, let’s
take a look at the result of calling
ApplyUpdates. This method takes
one argument: the number of
errors we ‘tolerate’ before generat-
ing a reconcile error event.
Usually, I would pass the value -1,
to indicate that I don’t want to tol-
erate any update error whatso-
ever. However, all kinds of update
errors can occur, for example if
someone else made a change to
one or more records in the mas-
ter-detail relation on the server. In
those cases, we get an
OnReconcileError event at the
ClientDataSet, which we can
handle by using a prepared form
from the Object Repository. Do a
File | New, go to the Dialogs tab,
and select the Reconcile Error
Dialog, Figure 3.

The resulting dialog also con-
tains the logic to deal with the
errors themselves, including
Actions such as Skip, Abort, Merge,
Correct, Cancel and Refresh.

To use the dialog, we must
include the newly generated unit,
and write the single line of code
shown in Listing 2 for the
OnReconcileError event han-
dler of the ClientDataSet
component.

That’s it! A powerful and
handy chunk of technology
available for our use with
nested tables.

Next Time
We’ve discovered nested tables,
seen how to use them for master-
detail relations in multi-tier appli-
cations, and examined both
displaying and update techniques.

A final warning when using
nested tables on the client side:
TDBGrid may have difficulty dis-
playing data when the associated
dataset consists of tables nested
too deeply: generally, 5 or more
levels of nesting, though I wouldn’t
even dream of using 5 levels...

After all this nesting, it’s time to
unravel things again. And what
better way to do this than experi-
menting with some Delphi debug-
ging techniques, including remote
debugging. So stay tuned!

Bob Swart (aka Dr.Bob, visit
www.drbob42.com, email him at
drbob@chello.nl) is a technical
consultant and webmaster using
Delphi, JBuilder and C++Builder,
and a freelance technical author.

➤ Above left: Figure 1
Above right: Figure 2 procedure TClientForm.NestedClientDatasetReconcileError(DataSet: TClientDataSet;

E: EReconcileError; UpdateKind: TUpdateKind; var Action: TReconcileAction);
begin
Action := HandleReconcileError(DataSet, UpdateKind, E);

end;

➤ Listing 2

➤ Figure 3

	TNestedTable
	Nested Tables
	Oracle 8
	Master-Detail
	Remote Master-Detail
	TClientDataSet
	Error Handling
	Next Time

